Abstract
Accurate determination of residual moisture content of a freeze-dried (FD) pharmaceutical product is critical for prediction of its quality. Near-infrared (NIR) spectroscopy is a fast and non-invasive method routinely used for quantification of moisture. However, several physicochemical properties of the FD product may interfere with absorption bands related to the water content. A commonly used stabilizer and bulking agent in FD known for variation in physicochemical properties, is mannitol. To minimize this physicochemical interference, different approaches for multivariate correlation between NIR spectra of a FD product containing mannitol and the corresponding moisture content measured by Karl Fischer (KF) titration have been investigated. A novel method, MIPCR (Main and Interactions of Individual Principal Components Regression), was found to have significantly increased predictive ability of moisture content compared to a traditional PLS approach. The philosophy behind the MIPCR is that the interference from a variety of particle and morphology attributes has interactive effects on the water related absorption bands. The transformation of original wavelength variables to orthogonal scores gives a new set of variables (scores) without covariance structure, and the possibility of inclusion of interaction terms in the further modeling. The residual moisture content of the FD product investigated is in the range from 0.7% to 2.6%. The mean errors of cross validated prediction of models developed in the investigated NIR regions were reduced from a range of 24.1-27.6% for traditional PLS method to 15.7-20.5% for the MIPCR method. Improved model quality by application of MIPCR, without the need for inclusion of a large number of calibration samples, might increase the use of NIR in early phase product development, where availability of calibration samples is often limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.