Abstract
The potato family includes a highly diverse cultivar repertoire and has a high potential for nutritional yield improvement and refinement but must in line with other crops be adapted to biotic and abiotic stresses, for example, accelerated by climate change and environmental demands. The combination of pluripotency, high ploidy, and relative ease of protoplast isolation, transformation, and regeneration together with clonal propagation through tubers makes potato highly suitable for precise genetic engineering. Most potato varieties are tetraploid having a very high prevalence of length polymorphisms and small nucleotide polymorphisms between alleles, often complicating CRISPR-Cas editing designs and strategies. CRISPR-Cas editing in potato can be divided into (i) characterization of target area and in silico-aided editing design, (ii) isolation and editing of protoplast cells, and (iii) the subsequent explant regeneration from single protoplast cells. Implementation of efficient CRISPR-Cas editing relies on efficient editing at the protoplast (cell pool) level and on robust high-throughput editing scoring methods at the cell pool and explant level. Gene and chromatin structure are additional features to optionally consider. Strategies and solutions for addressing key steps in genome editing of potato, including light conditions and schemes for reduced exposure to hormones during explant regeneration, which is often linked to somaclonal variation, are highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.