Abstract

An easy way of synthesizing low-cost carbon nanomaterials without the need for high-temperature processing approach is critical for energy storage applications because the demand has increased for affordable, long-term, and environmentally friendly synthesized carbon-based materials. Herein, we synthesized multilayered graphitic carbon nano-onions (CNOs) using an oil-wick flame pyrolysis approach, employing biowaste (chicken fat) oil as a cost-effective precursor. The prepared CNOs can provide enhanced ion movement and less resistance for electron transport by interconnecting CNO particles with one another. Furthermore, heteroatom (S,N)-doped CNOs (h-CNOs) were synthesized to optimize the hydrophilic and conductive properties of carbon materials, which eventually exalted the capacitive charge transfer kinetics. The h-CNOs demonstrated superior, highest specific capacitance of 261 F/g, while the undoped CNOs showed a capacitance of 180.6 F/g at a current density of 1 A/g. In addition to capacitance, the h-CNOs also demonstrated a rate capability of 69% and a good cycling stability of 97.5% under high current densities. An asymmetric supercapacitor was fabricated using the h-CNOs as the negative and MnCo2S4 (MCS) as the positive electrode. The device showed high energy and power performance of 32.8 Wh/kg and 7350 W/kg, respectively, with a capacitance retention of 97% over 5000 cycles. Considering the facile strategic way to produce novel carbonaceous materials derived from biowaste oil (chicken fat oil), this could be considered a potential advantage for commercial energy storage devices and may open the door to producing inexpensive, industrially revolutionizing energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call