Abstract

Distributed generators (DGs) offer significant advantages to electric power systems, including improved system losses, stability, and reduced losses. However, realizing these benefits necessitates optimal DG site selection and sizing. This study proposes a traditional multiobjective particle swarm optimization (PSO) approach to determine the optimal location and size of renewable energy-based DGs (wind and solar) on the Namibian distribution system. The aim is to enhance voltage profiles and minimize power losses and total DG cost. Probabilistic models are employed to account for the random nature of wind speeds and solar irradiances. This is used in an algorithm which eventually optimizes the siting and sizing of DGs using the nearest main substation as reference. The proposed method is tested on the Vhungu-Vhungu 11 kV distribution network in Namibia. Four cases were considered: base case with no DG, solar power, wind power, and a hybrid of both wind and solar. Optimal values for each case are determined and analyzed: 0.69.93 kW at 26 km for solar PV-based DG and 100 kW at 42 km for wind-based DG. These findings will serve as a valuable blueprint for future DG connections on the Namibian distribution network, providing guidance for optimizing system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.