Abstract

Ammonia is an industrially relevant chemical that can be directly synthesized from water and air using renewable energy through the electrochemical nitrogen reduction reaction (NRR). However, because of the inert nature of nitrogen, current attempts at synthesizing ammonia under aqueous conditions result in low selectivity and yield rates. The poor electrocatalytic performance is mainly attributed to competing hydrogen evolution, underexposed active sites, inadequate electrode contact, and poor stabilization/destabilization of key reaction intermediates. Herein, we present a catalyst composed of MoO2 with surface vacancies dispersed over conductive carbon nanowires that mitigates these obstacles for NRR by providing a high surface area with stable catalytic sites and an underlying conductive support, where a variety of X-ray spectroscopy techniques are used to characterize the MoO2 catalyst. This uniquely engineered catalyst exhibits exceptional Faradaic efficiencies of over 30% and yields of 21.2 μg h–1 mg–1 at a low potential of −0.1 V vs RHE under ambient aqueous conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.