Abstract

Food waste (FW) comprises carbohydrates, proteins, lipids, and water, posing technical challenges for effective treatment and valorisation. This study addresses these challenges by using black soldier fly larvae (BSFL) as a bioconversion medium to transform FW into biodiesel (BD). BSFL predominantly consumed the carbohydrates and proteins in FW (81 wt%), while showing a lower preference for lipids (<50 wt% consumed). Notwithstanding the lower consumption of lipids in the FW than that of carbohydrates and proteins, BSFL had a high lipid content (48.3 wt%). The subsequent conversion of the lipids extracted from BSFL into BD was tested via catalytic (acid/alkali) and non-catalytic transesterification processes. The BD yield from catalytic transesterification was lower than that from non-catalytic transesterification because of the low tolerance against free fatty acids (FFAs). BD was also produced from the lipid-concentrated residual FW through non-catalytic transesterification. Although the FW residue extracts contained high amounts of FFAs (49.9 wt%), non-catalytic transesterification displayed a high BD yield (92.4 wt%; yields from catalytic transesterification: < 80.0 wt%). Moreover, blending the BD derived from the BSFL and FW residue extracts enhanced the fuel properties. The BSFL-assisted FW management efficiently reduced FW by 90 wt% while producing a high-quality BD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.