Abstract
An effective model with constituent quarks as fundamental degrees of freedom is used to predict the relative strangeness production pattern in both high energy elementary and heavy ion collisions. The basic picture is that of the statistical hadronization model, with hadronizing color-singlet clusters assumed to be at full chemical equilibrium at constituent quark level. Thus, by assuming that at least the ratio between strange and non-strange constituent quarks survives in the final hadrons, the apparent undersaturation of strange particle phase space observed in the data can be accounted for. In this framework, the enhancement of relative strangeness production in heavy ion collisions in comparison with elementary collisions is mainly owing to the excess of initial non-strange matter over antimatter and the so-called canonical suppression, namely the constraint of exact color and flavor conservation over small volumes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.