Abstract
We analyze the stability of invariant tori for Hamiltonian systems with two degrees of freedom by constructing a transformation that combines Kolmogorov-Arnold-Moser theory and renormalization-group techniques. This transformation is based on the continued fraction expansion of the frequency of the torus. We apply this transformation numerically for arbitrary frequencies that contain bounded entries in the continued fraction expansion. We give a global picture of renormalization flow for the stability of invariant tori, and we show that the properties of critical (and near critical) tori can be obtained by analyzing renormalization dynamics around a single hyperbolic strange attractor. We compute the fractal diagram, i.e., the critical coupling as a function of the frequencies, associated with a given one-parameter family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.