Abstract
We analyze the breakup of invariant tori in Hamiltonian systems with two degrees of freedom using a combination of Kolmogorov-Arnold-Moser (KAM) theory and renormalization-group techniques. We consider a class of Hamiltonians quadratic in the action variables that is invariant under the chosen KAM transformations, following the approach of Thirring. The numerical implementation of the transformation shows that the KAM iteration converges up to the critical coupling at which the torus breaks up. By combining this iteration with a renormalization, consisting of a shift of resonances and rescalings of momentum and energy, we obtain a more efficient method that allows one to determine the critical coupling with high accuracy. This transformation is based on the physical mechanism of the breakup of invariant tori. We show that the critical surface of the transformation is the stable manifold of codimension one of a nontrivial fixed point, and we discuss its universality properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.