Abstract

Oxygen defect engineering is a widely used approach for tuning physical properties in oxides. Multivalent transition metal oxide La0.7Sr0.3CoO3-δ (LSCO) shows oxygen vacancy-driven metal-to-insulator transition (MIT) due to topotactic phase transition and its high oxygen vacancy tolerance. Here, we introduce strain as a new degree of freedom to study the strain-oxygen vacancy coupling effects and elucidate its impact on the electronic property in oxygen-deficient LSCO epitaxial thin films grown on SrTiO3 (100) single crystal. By combining the experimental results with density functional theory plus U (DFT+U) calculations, we reveal that 2.1 % in-plane tensile strain can stabilize the insulating state of LSCO with a surprisingly low concentration of oxygen vacancies, <0.5 %. This study reveals that the MIT in LSCO is governed by the combination of oxygen vacancies and strain, offering the potential for additional tuning knob of the material's electronic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.