Abstract

Abstract The mechanical properties and strain-induced crystallization (SIC) of elastomeric composites were investigated as functions of the extension ratio (λ), multiwalled carbon nanotube (CNT) content, and carbon black (CB) content. The tensile strength and modulus gradually increase with increasing CNT content when compared with the matrix and the filled rubbers with same amount of CB. Both properties of rubber with CB and CNT show the magnitude of each CNT and CB component following the Pythagorean Theorem. The ratio of tensile modulus is much higher than that of tensile strength because of the CNT shape/orientation and an imperfect adhesion between CNT and rubber. The tensile strength and modulus of the composite with a CNT content of 9 phr increases up to 31% and 91%, respectively, compared with the matrix. Differential scanning calorimetry (DSC) analysis reveals that the degree of SIC increases with an increase in CNT content. Mechanical properties have a linear relation with the latent heat of crystallization (LHc), depending on the CNT content. As the extension ratio increases, the glass-transition temperature (Tg) of the composite increases for CB- and CNT-reinforced cases. However, the LHc has a maximum of λ = 1.5 for the CNT-reinforced case, which relates to a CNT shape and an imperfect adhesion with rubber. Based on these results, the reinforcing mechanisms of CNT and CB are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call