Abstract

Accurate segmentation of pelvic organs is important for prostate radiation therapy. Modern radiation therapy starts to use a magnetic resonance image (MRI) as an alternative to computed tomography image because of its superior soft tissue contrast and also free of risk from radiation exposure. However, segmentation of pelvic organs from MRI is a challenging problem due to inconsistent organ appearance across patients and also large intrapatient anatomical variations across treatment days. To address such challenges, we propose a novel deep network architecture, called "Spatially varying sTochastic Residual AdversarIal Network" (STRAINet), to delineate pelvic organs from MRI in an end-to-end fashion. Compared to the traditional fully convolutional networks (FCN), the proposed architecture has two main contributions: 1) inspired by the recent success of residual learning, we propose an evolutionary version of the residual unit, i.e., stochastic residual unit, and use it to the plain convolutional layers in the FCN. We further propose long-range stochastic residual connections to pass features from shallow layers to deep layers; and 2) we propose to integrate three previously proposed network strategies to form a new network for better medical image segmentation: a) we apply dilated convolution in the smallest resolution feature maps, so that we can gain a larger receptive field without overly losing spatial information; b) we propose a spatially varying convolutional layer that adapts convolutional filters to different regions of interest; and c) an adversarial network is proposed to further correct the segmented organ structures. Finally, STRAINet is used to iteratively refine the segmentation probability maps in an autocontext manner. Experimental results show that our STRAINet achieved the state-of-the-art segmentation accuracy. Further analysis also indicates that our proposed network components contribute most to the performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.