Abstract

Accurate segmentation of pelvic organs (i.e., prostate, bladder and rectum) from CT image is crucial for effective prostate cancer radiotherapy. However, it is a challenging task due to 1) low soft tissue contrast in CT images and 2) large shape and appearance variations of pelvic organs. In this paper, we employ a two-stage deep learning based method, with a novel distinctive curve guided fully convolutional network (FCN), to solve the aforementioned challenges. Specifically, the first stage is for fast and robust organ detection in the raw CT images. It is designed as a coarse segmentation network to provide region proposals for three pelvic organs. The second stage is for fine segmentation of each organ, based on the region proposal results. To better identify those indistinguishable pelvic organ boundaries, a novel morphological representation, namely distinctive curve, is also introduced to help better conduct the precise segmentation. To implement this, in this second stage, a multi-task FCN is initially utilized to learn the distinctive curve and the segmentation map separately, and then combine these two tasks to produce accurate segmentation map. The final segmentation results of all three pelvic organs are generated by a weighted max-voting strategy. We have conducted exhaustive experiments on a large and diverse pelvic CT dataset for evaluating our proposed method. The experimental results demonstrate that our proposed method is accurate and robust for this challenging segmentation task, by also outperforming the state-of-the-art segmentation methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.