Abstract

Two-dimensional transition metal dichalcogenides (TMDCs) are promising in spintronics due to their spin-orbit coupling, but their intrinsic non-magnetic properties limit their further development. Here, we focus on the energy landscapes of TMDC (MX2, M = Mo, W and X = S, Se, Te) monolayers by rhenium (Re) substitution doping under axial strains, which controllably drive 1H ↔ 1Td structural transformations. For both 1H and 1Td phases without strain, Re-doped TMDCs have an n-type character and are non-magnetic, but the tensile strain could effectively induce and modulate the magnetism. Specifically, 1H-Re0.5Mo0.5S2 gets a maximum magnetic moment of 0.69 μB at a 6% uniaxial tensile strain along the armchair direction; along the zigzag direction it exhibits a significant magnetic moment (0.49 μB) at a 2.04% uniaxial tensile strain but then exhibits no magnetism in the range of [5.10%, 7.14%]. By contrast, for 1Td-Re0.5Mo0.5S2 a critical uniaxial tensile strain along the zigzag direction reaches up to ∼9.18%, and a smaller uniaxial tensile strain (∼5.10%) along the zigzag direction is needed to induce the magnetism in 1Td-Re0.5M0.5Te2. The results reveal that the magnetism of Re-doped TMDCs could be effectively induced and modulated by the tensile strain, suggesting that strain engineering could have significant applications in doped TMDCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.