Abstract
We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus (BP) using angle-resolved photoemission spectroscopy and density functional theory. The results show that there are band crossings in the Z–L (armchair) direction, but not in the Z–A (zigzag) direction. The corresponding dispersion-k distributions near the valence band maximum (VBM) exhibit quasi-linear or quadratic relationships, respectively. Along the armchair direction, the tensile strain expands the interlayer spacing and shifts the VBM to deeper levels with a slope of −16.2 meV/% strain. Conversely, the tensile strain along the zigzag direction compresses the interlayer spacing and causes the VBM to shift towards shallower levels with a slope of 13.1 meV/% strain. This work demonstrates an effective method for band engineering of bulk BP by uniaxial tensile strain, elucidates the mechanism behind it, and paves the way for strain-regulated optoelectronic devices based on bulk BP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.