Abstract
Domain walls, topological defects that define the frontier between regions of different stacking in multilayer graphene, have proved to host exciting physics. The ability of tuning these topological defects in-situ in an electronic transport experiment brings a wealth of possibilities in terms of fundamental understanding of domain walls as well as for electronic applications. Here, we demonstrate through a MEMS (micro-electromechanical system) actuator and magnetoresistance measurements the effect of domain walls in multilayer graphene quantum Hall effect. Reversible and controlled uniaxial strain triggers these topological defects, manifested as new quantum Hall effect plateaus as well as a discrete and reversible modulation of the current across the device. Our findings are supported by theoretical calculations and constitute the first indication of the in-situ tuning of topological defects in multilayer graphene probed through electronic transport, opening the way to the use of reversible topological defects in electronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.