Abstract

Germanium condensation has proven to be a reliable route for obtaining smoothly graded composition SiGe layers with good reproducibility and reduced defect density. The process is known as a crucial tool to induce well-defined strain on Si or SiGe layers with potential use in semiconductor devices. In this work, we show that starting from a low concentration Si0.92Ge0.08 layer grown on top of a crystalline Si(001) on SOI substrates, we can reach desirable concentration with a nonmonotonic interplay on in-plane and out-of-plane strain. The Ge concentration is evaluated by a combination of ultralow energy secondary ion mass spectroscopy (ULE-SIMS) and synchrotron X-ray measurements (diffraction and reflectivity). After the evaluation of Ge content, the strain-sensitive process of rolling up tubes from the flat layers is used and combined with X-ray diffraction to provide a concise scenario of the strain evolution along an in-growth oxidation series, pointing out the conditions that maximize strain, as well as its fading, as the Ge content rises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.