Abstract

Concentrated hard sphere suspensions often show an interesting nonlinear behavior, called strain stiffening, in which the viscosity or modulus starts to increase at critical strain amplitude. Sudden increase of rheological properties is similar to shear thickening; however, the particle dynamics in the strain stiffening under oscillatory shear flow does not necessarily coincide with the mechanism of shear thickening under step shear flow. In this study, we have systematically investigated the nonlinear rheology of non-colloidal (>1 μm) hard sphere suspensions dispersed in Newtonian fluid near liquid-and-crystal coexistence region in order to better understand the strain stiffening behavior. The suspensions near liquid-and-crystal coexistence region are known to locally form the closed packing structure. The critical strain amplitude which is the onset of strain stiffening was different for the storage and loss modulus. But they converged to each other as the suspension forms a more crystalline structure. The critical strain amplitude was independent of medium viscosity, imposed angular frequency, and particle size, but was strongly dependent upon particle volume fraction. The onset of strain stiffening was explained in terms of shear-induced collision due to particle motion in the closed packing structure. Nonlinear stress wave-forms, which reflect the micro-structural change, were observed with the onset of strain stiffening. During the strain stiffening, enhanced elastic stress before and after flow reversal was observed which originates from changes in the suspension microstructure. Nonlinearity of the shear stress in terms of Fourier intensity was extremely increased up to 0.55. Beyond the strain stiffening, the suspension responded liquid-like and the nonlinearity decreased but the elastic shear stress was still indicating the microstructure rearrangement within a cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call