Abstract

In this Letter, a microbottle-resonator-based strain sensor with individual mode distribution and recognizable resonance spectrum was proposed and demonstrated. A cleaned-up spectrum was achieved by inscribing horizontal microgroove scars close to the bottle center. The inscribing parameters of these grooves were designed according to the field distribution of the modes, and the obtained spectrum showed excellent consistency with theoretical analysis. The shift in the resonance peak with increasing stretching force was investigated, and the corresponding strain sensitivities were 0.085pm/μϵ for transverse electric polarization and 0.136pm/μϵ for transverse magnetic polarization, which could be further increased by using materials with smaller elastic moduli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.