Abstract
The interaction between light and metallic nanostructures leads to many impressive achievements and has a wide range of applications. The thin-metal-film plasmon-assisted fiber-optic polarizer is one of the essential applications. However, the polarization mechanism and the transmitted polarization of the plasmon-assisted polarizer have given rise to controversy over the past decade. Which of the polarizations is preferentially transmitted through the polarizer? The transverse electric polarization or the transverse magnetic polarization? Here, special emphasis is placed upon the polarization mechanism and the transmitted polarization of thin-metal-film plasmon-assisted fiber polarizers. We first investigate the polarization mechanism of the polarizers theoretically and numerically. Furthermore, a novel approach is proposed to demonstrate the transmitted polarization in the plasmon-assisted fiber polarizers experimentally. We demonstrate that the polarization mechanism is based on the polarization selective absorption of the metallic material, and the transverse electric polarization is the only transmitted polarization of the metallic plasmon-assisted polarizer. Moreover, the plasmon-assisted polarizer can offer a high polarization extinction ratio (33.1 dB) and a low insertion loss (1.1 dB) at room temperature and have excellent temperature stability in the range of -48 to 82 °C. Experimental results agree well with our theoretical and numerical analyses. The findings clarify the confusion about the polarization mechanism and the transmitted polarization of metallic plasmon-assisted fiber polarizers over the past decade, providing new ground for the exploration of polarization-sensitive optical systems, with good potential applications in the fields of optical sensors, plasmonic lasers, coherent optical communications, and biosensor systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.