Abstract

Low back pain (LBP) is frequently reported following rear impact collisions. Knowledge of how the facet joint capsule (FJC) mechanically behaves before and after rear impact collisions may help explain LBP development despite negative radiographic evidence of gross tissue failure. This study quantified the Green strain tensor in the facet joint capsule during rotation and translation range-of-motion tests completed before and following an in vitro simulation of a rear impact collision. Eight FSUs (4 C3-C4, 4 C5-C6) were tested. Following a preload test, FSUs were flexed and extended at 0.5 deg/s until an ±8 N·m moment was achieved. Anterior and posterior joint translation was then applied at 0.2 mm/s until a target ±400 N shear load was imposed. Markers were drawn on the facet capsule surface and their coordinates were tracked during pre- and postimpact range-of-motion tests. Strain was defined as the change in point configuration relative to the determined neutral joint posture. There were no significant differences (p > 0.05) observed in all calculated FJC strain components in rotation and translation before and after the simulated impact. Our results suggest that LBP development resulting from the initiation of strain-induced mechanoreceptors and nociceptors with the facet joint capsule is unlikely following a severe rear impact collision within the boundaries of physiological joint motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.