Abstract
The surface morphology of copper (Cu) often changes after the synthesis of graphene by chemical vapor deposition (CVD) on a Cu foil, which affects the electrical properties of graphene, as the Cu step bunches induce the periodic ripples on graphene that significantly disturb electrical conduction. However, the origin of the Cu surface reconstruction has not been completely understood yet. Here, we show that the compressive strain on graphene induced by the mismatch of thermal expansion coefficient with Cu surface can be released by forming periodic Cu step bunching that depends on graphene layers. Atomic force microscopy (AFM) images and the Raman analysis show the noticeably longer and higher step bunching of Cu surface under multilayer graphene and the weaker biaxial compressive strain on multilayer graphene compared to monolayer. We found that the surface areas of Cu step bunches under multilayer and monolayer graphene are increased by ∼1.41% and ∼0.77% compared to a flat surface, respectively, indicating that the compressive strain on multilayer graphene can be more effectively released by forming the Cu step bunching with larger area and longer periodicity. We believe that our finding on the strain relaxation of graphene layers by Cu step bunching formation would provide a crucial idea to enhance the electrical performance of graphene electrodes by controlling the ripple density of graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.