Abstract

A freestanding nanopillar with a diameter of 300nm and a height of 2μm is demonstrated by focused ion beam milling. The measured microphotoluminescence (μ-PL) from the embedded InGaN∕GaN multiple quantum wells shows a blueshift of 68meV in energy with a broadened full width at half maximum, ∼200meV. Calculations based on the valence force field method suggest that the spatial variation of the strain tensors in the nanopillar results in the observed energy shift and spectrum broadening. Moreover, the power-dependent μ-PL measurement suggests that the strain-relaxed emission region exhibits a higher radiative recombination rate than that of the strained region, indicating potential for realizing high-efficiency nanodevices in the UV/blue wavelength range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.