Abstract

We measure uniaxial strain fields in the vicinity of edges and wrinkles in graphene prepared by chemical vapor deposition (CVD), by combining microscopy techniques and local vibrational characterization. These strain fields have magnitudes of several tenths of a percent and extend across micrometer distances. The nonlinear shear-lag model remarkably captures these strain fields in terms of the graphene-substrate interaction and provides a complete understanding of strain-relieving wrinkles in graphene for any level of graphene-substrate coherency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call