Abstract

Abstract A laboratory investigation into the effects of shear strain rate on shear modulus and hysteretic damping of normally consolidated clays was carried out. The effects of shear strain rate were examined at cyclic shear strain amplitudes between 10−6 and 10−3 in undrained cyclic torsion shear tests. When the frequency of loading was changed between 0.005 and 0.1 Hz, the equivalent shear modulus was insensitive to the rate of shear straining. On the other hand, the hysteretic damping increased according to the decrease in the shear strain rate. Furthermore, for shear strains less than about 2 × 10−5, the maximum stiffness was hardly influenced by the shear strain rate, type of loading, number of cycles, and the cyclic prestraining; it can therefore be characterized as pseudoelastic shear modulus. On the basis of the test results, it is concluded that when applying the results of laboratory cyclic loading tests to the analysis of in situ cyclic loading problems, the effects of shear strain rate on hysteretic damping should be properly evaluated to match the frequency of loading expected in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.