Abstract

Fused Deposition Modeling (FDM), one of the most popular additive manufacturing technologies in polymer 3D printing, has been increasingly used in fabricating continuous fiber reinforced composites (CFRCs) in recent years. Intensive research has been conducted on the quasi-static mechanical properties of FDM made CFRCs and the corresponding failure mechanisms. However, limited research has been reported on the dynamic mechanical behavior of CFRCs fabricated using FDM. This paper presents a comprehensive experimental study to understand the deformation and load carrying capacity of FDM-fabricated continuous fiber reinforced Onyx (CFRO), with a focus on the dynamic tensile loadings up to strain rate of 100/s. The deformation and failure mechanisms of FDM-fabricated CFROs under dynamic loadings have been identified after microstructural analyses of fractured specimens. The effects of fiber type, fiber volume fraction, and strain rate on the tensile behavior have been revealed for Onyx reinforced by carbon fiber filaments (CFF), glass fiber filaments (GFF), and Kevlar fiber filaments (KFF). Empirical formulas have also been derived to describe the relationships between the elastic modulus, ultimate tensile strength (UTS) and fiber volume fraction. The results demonstrate that increasing the strain rate from 6.7 × 10−4/s to 100/s substantially enhances the UTS of all three types of printed CFRO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call