Abstract
This microstructural and anisotropy of magnetic susceptibility study of the internal structures of the Hercynian Neouvielle granite pluton (100 km2) provides new data indicating that the pluton was emplaced during the main Hercynian tectonic event recognized in the Pyrenees. It also provides new data about the later Alpine deformation localized along narrow mylonitic bands. These bands acted as reverse faults and have not rotated the Hercynian structures that define the main part of the pluton. The pluton is composed of two structural domains: the northern half of the pluton displays a beak shape in map view, with subhorizontal E–W trending lineations of magmatic origin; the southern half is semi-circular and displays rather steeply northward plunging lineations corresponding to magmatic and high temperature (HT) solid-state microstructures. These features are associated with magma deformation during emplacement. Magma deformation corresponds, in the northern half of the pluton, to an E–W strike-slip deformation recognized in the enveloping pelitic metasediments of Carboniferous age and, in the southern half of the pluton, to southward overthrusting recognized in the enveloping quartzites of Devonian age. Juxtaposition in a single granite body of transcurrent and compressive domains is viewed as a strain partitioning in the magma. This strain partitioning is linked to both the transpressive character of the main regional deformation event and the rheological contrast between the pelitic country rocks and quartzose country rocks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have