Abstract
Monolayers of transition metal ReX2 and ReSX (X=S, Se) have been proposed as new electronic materials for nanoscale devices. In this paper, there are three structures: ReS2, Janus ReSSe, and ReSe2. Based on the first-principles theory, we analyzed the structures, electronic properties, and Fermi speed. Remarkably, we studied the stability of structures of ReS2, Janus ReSSe, and ReSe2 monolayers under biaxial tensile and compressive strain by density functional approach. It is worth noting that when the strain changes, not only the band gap changes but also the band gap properties (direct and indirect) also change. The bond gaps decrease with the increase of tensile strain and compressive strain; Moreover, when the strain is greater than 0, the bond angle decreases as the strain increases, and when the strain is less than 0, the bond angle increases as the strain increases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have