Abstract
It was demonstrated that the ultrasonic impact treatment results in the gradient microstructure of the surface layer of commercially pure titanium composed of nanosized nonequiaxial α-Ti grains, underlying course α-grains with banded substructure and deformation twins, and subjacent layer characterized by the presence of a few twins and extinction contours within the course grains. The effect of ultrasonic impact treatment on the mechanical behavior of titanium specimen under tension was revealed theoretically and experimentally Using optical and atomic force microscopes it was shown that the fine-grained surface layer impede dislocation motion causing the initiation and propagation of shear bands oriented along the direction of maximum shear stresses. The fine structure of shear bands was studied by transmission electron microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.