Abstract

One of the approaches for realizing advanced high k insulators for metal oxide semiconductor field effect transistors based devices is the use of rare earth oxides. When these oxides are deposited as epitaxial thin films, they demonstrate dielectric properties that differ greatly from those that are known for bulk oxides. Using structural and spectroscopic techniques, as well as first-principles calculations, Gd2O3 films deposited on Si (111) and Ge (111) were characterized. It was seen that the same 4 nm thick film, grown simultaneously on Ge and Si, presents an unstrained lattice on Ge while showing a metastable phase on Si. This change from the cubic lattice to the distorted metastable phase is characterized by an increase in the dielectric constant of more than 30% and a change in band gap. The case in study shows that extreme structural changes can occur in ultra-thin epitaxial rare earth oxide films and modify their dielectric properties when the underlying substrate is altered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.