Abstract

The interplay among anisotropic magnetic terms, such as the bond-dependent Kitaev interactions and single-ion anisotropy, plays a key role in stabilizing the finite-temperature ferromagnetism in the two-dimensional compound $\rm{CrSiTe_3}$. While the Heisenberg interaction is predominant in this material, a recent work shows that it is rather sensitive to the compressive strain, leading to a variety of phases, possibly including a sought-after Kitaev quantum spin liquid [C. Xu, \textit{et. al.}, Phys. Rev. Lett. \textbf{124}, 087205 (2020)]. To further understand these states, we establish the quantum phase diagram of a related bond-directional spin-$3/2$ model by the density-matrix renormalization group method. As the Heisenberg coupling varies from ferromagnetic to antiferromagnetic, three magnetically ordered phases, i.e., a ferromagnetic phase, a $120^\circ$ phase and an antiferromagnetic phase, appear consecutively. All the phases are separated by first-order phase transitions, as revealed by the kinks in the ground-state energy and the jumps in the magnetic order parameters. However, no positive evidence of the quantum spin liquid state is found and possible reasons are discussed briefly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.