Abstract
The in situ high-energy x-ray diffraction was used for revealing an atomic mechanism on the two-step pseudoelastic behavior found in the premartensitic phase of Ni2MnGa magnetic shape memory alloy. The applied stress first suppresses the three-dimensional modulated structure of the premartensitic phase to a two-dimensional modulated one, which is accompanied by a change in the modulation wave vector and accommodates a large lattice strain reaching ∼1%. With further increasing stress, the two-dimensional modulated premartensite transforms to the five-layered modulated martensite. The observation of the stress-induced dimensionality crossover of atomic modulation has broad impacts in understanding not only the mechanical properties of advanced shape memory alloys but also the physical properties of condensed matter with heterogeneous structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.