Abstract

Using high resolution x-ray diffraction and Hall effect measurements, we found that the tensile strain caused by dislocation inclination in Si doped GaN became immeasurable when carbon codoping was used to compensate the free carriers. This result suggested that the tensile strain is related to free carrier concentration instead of Si concentration. Such an effect could be explained by the Fermi level effect on the surface-mediated dislocation climb governed by Ga vacancies, whose concentration is strongly influenced by the Fermi level position. This phenomenon is possibly similar to the well-known Fermi level effect in GaAs and GaP systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.