Abstract
Hybrid organic-inorganic metal halide perovskites (HOIPs) are promising materials for optoelectronics applications. Their optical and electrical properties can be controlled by strain engineering, that results from application of local elastic deformation or deposition on pre-patterned substrates acquiring a conformal 3D shape. Most interesting, their mechanical properties depend on their crystal structure, composition and dimensionality. We explore by numerical simulations the deformation of a selection of HOIPs comprising a broad range of elastic properties. We consider an axial symmetry with the formation of microdomes on flakes. Radial and vertical forces are considered, finding that the radial force is more effective to obtain large deformation. Large vertical displacement and strain is obtained for HOIPs with low stiffness. The layered nature of HOIPs, that are formed by inorganic layers of different thickness and organic spacers, is also investigated, revealing a non-monotonous trend with the proportion of inorganic to organic part.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.