Abstract

The work hardening behavior of electrodeposited nanocrystalline (grain size: 100 nm) and fully annealed polycrystalline nickel (grain size: 160 µm) was examined by hardness indentation analysis. First, plastic strain was introduced into the materials through large Rockwell hardness indentations. A series of Vickers micro-hardness traces below and away from the Rockwell indentation then measured the change in hardness as a function of distance from the plastic zone. The results showed that polycrystalline nickel exhibited considerable strain hardening, with micro-hardness values closest to the Rockwell indentation averaging twice the hardness value of the bulk material. On the other hand, for the nanocrystalline nickel the Vickers micro-hardness values changed only by a few percent indicating a limited strain hardening capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.