Abstract
The effect of grain segmentation by mechanical twinning on the strain-hardening behaviour of textured and random polycrystals is assessed using the Kocks-Mecking method of analysis. Profuse twinning in the first 6–8% strain in textured polycrystals has relatively small strengthening effects despite the large volume fraction of grains undergoing twinning. This is due to the small value of the Hall–Petch constant in textured polycrystals. For random polycrystals, the Hall–Petch constant is much larger but the overall hardening effect is reduced due to the small volume fraction of grains undergoing twinning. Additional hardening effects due to the twinning crystallographic transformation on dislocation mobility are deemed small in cast polycrystals due to their low dislocation density, but may be more important in textured polycrystals with higher dislocation densities. Grain size-independent storage of dislocations accounts for the strain hardening at large strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.