Abstract

Non-linear mechanical behavior at large shear deformation was been investigated for heat-set β-lactoglobulin gels at pH 7 and 0.1 M NaCl using both oscillatory shear and shear flow. These gels have a self-similar structure at length scales smaller than the correlation length of the gel with fractal dimension d f = 2 . Strain hardening is observed that can be well described using the model proposed by Gisler et al. [T.C. Gisler, R.C. Ball, D.A. Weitz, Phys. Rev. Let. 82 (1999) 1064] for fractal colloidal gels. The increase of the shear modulus normalized by the low strain value ( G 0 ) is independent of G 0 . For weak gels the elasticity increases up to a factor of ten, while for strong gels the increase is very small. At higher deformation irreversible fracture occurs, which leads eventually to macroscopic failure of the gel. For weak gels formed at low concentrations the deformation at failure is about 2, independent of the shear modulus. For strong gels fracture occurs at approximately constant stress ( 2 × 10 3 Pa ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.