Abstract

We investigate the growth of strain-engineered low-density InAs bilayer quantum dots (BQDs) on GaAs by molecular beam epitaxy. Owing to increasing dot size and In composition of the upper QDs, low-density BQDs in a GaAs matrix with an emission wavelength up to 1.4 μm at room temperature are achieved. Such a wavelength is larger than that of conventional QDs in a GaAs matrix (generally of about 1.3 μm). The optical properties of the BQDs are sensitive to annealing temperature used after spacer layer growth. Significant decrease of integrated PL intensity is observed as the annealing temperature increases. At 10K, single photon emission from the BQDs with wavelength around 1.3 μm is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.