Abstract

In this paper, the incremental theory of plasticity is used in conjunction with the strain energy density criterion to determine the stress field in 4-in. wide test specimens containing 3 holes. These specimens, made from 0.04-in. thick sheets of 2024-T3 aluminum, also contained small collinear cracks emanating from the holes. The initial crack sizes varied from 0.15 to 0.26 in. Residual strength tests conducted with these specimens revealed that stable tearing occurred before failure. Analyses were performed to predict the stable crack extension and failure by plastic collapsed. Because of the complexities involved with nonlinear stress analysis combined with subcritical crack extension, the finite element method was used with the grid pattern adjusted for each increment of stable tearing. Reasonable correlation between the experimental data and predicted results was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.