Abstract

Crack-extension resistance for the polycarbonate material is examined by application of the strain energy density criterion and the incremental theory of plasticity. The energy state ahead of a slow moving crack in a three-point bend specimen is obtained for each load increment and used to determine the crack growth characteristics. The analytical results are displayed by plotting the strain energy density factor S as a function of crack length and compared with available experimental data on the polycarbonate material. Standard deviations and mean errors are computed for the experimentally measured and analytically determined values of S and are shown to be much lower than those based on the J-integral parameter. Modeling of the polycarbonate material by the theory of plasticity still remains much to be desired. Crack growth calculations are performed for a strain hardening parameter α = 0.85 that controls the proportion of isotropic and kinematic hardening. Nevertheless, the criterion dS/da = const. is shown to collate well with the experimental crack growth data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call