Abstract

Objective. To investigate the ability of two-dimensional longitudinal strain echocardiography (2DST), to detect the early doxorubicin cardiotoxicity. Patients and Methods. The study included 25 children with newly diagnosed acute lymphoblastic leukemia (ALL) aged 5–15 years and 30 healthy control children. They had echocardiographic examination with conventional 2-dimensional (2D), pulsed tissue Doppler (PTD), and 2DST echocardiography before and within 1 week after doxorubicin treatment. Results. There was no significant difference in left ventricle (LV) systolic and diastolic functions measured by conventional 2-D and PTD echocardiography between patients and controls. However, there was significant decrease in LV global and peak systolic strain detected by 2-DST echocardiography in study group than control. After doxorubicin treatment, there was no significant difference in LV systolic and diastolic functions measured by conventional 2-D and PTD echocardiography than before treatment except for prolonged IVCT and IVRT, but LV global and peak systolic strain was significantly lower after treatment. Conclusion. 2-D longitudinal strain echocardiography was more sensitive than conventional 2-D and PTD in detecting the early LV doxorubicin-induced cardiotoxicity in children with ALL.

Highlights

  • Doxorubicin is one of the most effective available anthracycline chemotherapeutic agents that have been widely used in the treatment of pediatric malignancies

  • Its efficacy is often limited by its related cardiotoxicity, which leads to cardiomyopathy that may evolve into heart failure [2,3,4]

  • Diagnosed children with acute lymphoblastic leukemia confirmed by complete blood picture, bone marrow examination, and immunophenotyping by flow cytometry and fluorescence in situ hybridization (FISH) technique

Read more

Summary

Introduction

Doxorubicin is one of the most effective available anthracycline chemotherapeutic agents that have been widely used in the treatment of pediatric malignancies. Its introduction has led to the successful treatment of childhood cancer with improved survival rates. Because doxorubicin plays a key role in the treatment of many malignancies, its loss from the field of cancer treatments would lead to a dramatic reduction in cure rates. Its efficacy is often limited by its related cardiotoxicity, which leads to cardiomyopathy that may evolve into heart failure [2,3,4]. Cardiotoxicity can arise acutely, during or shortly after treatment and regardless of dose in the form of cardiac arrhythmias, for example, sinus tachycardia, ventricular, and supraventricular. Pericarditis, potentially fatal congestive heart failure, and acute pulmonary edema can occur during doxorubicin therapy caused by myocyte necrosis as a result of increased cardiac apoptosis and alteration of cardiac cytochrome P450 expression and arachidonic acid metabolism [5, 6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call