Abstract

We investigated the role of serotonin(2C) receptor-mediated feedback mechanisms in the response to citalopram in C57BL/6 and DBA/2 mice, which are respectively responders and non-responders to selective serotonin reuptake inhibitors in the forced swimming test. The microdialysis technique was used to assess changes in extracellular serotonin and GABA in the mouse dorsal raphé (DR). Citalopram (1.25-20 mg/kg) raised extracellular serotonin and GABA in the DR of both mouse strains. These effects were abolished by depleting brain serotonin with p-chlorophenylalanine (300 mg/kg × 3). Systemic and/or intra-DR infusion of the serotonin(2C) receptor antagonist 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (1 mg/kg and 0.1 μM, respectively) enhanced citalopram's effect on extracellular serotonin in the DR and medial prefrontal cortex and abolished the rise of GABA in the DR of DBA/2 mice but had no effect in C57BL/6 mice. The serotonin(2C) receptor agonist Ro60-0175 (0.03-3.0 mg/kg) reduced extracellular serotonin and raised GABA in the DR of DBA/2 mice but had much less effect in C57BL/6 mice. These findings show that the sensitivity of serotonin(2C) receptors determines the efficacy of augmentation strategies aimed at enhancing the effect of serotonin reuptake inhibitors on extracellular serotonin through the suppression of serotonin(2C) receptor-mediated feedback control of serotonin neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call