Abstract
The aim of the present study was to compare the effects of citalopram, either alone or combined with 5-HT1A receptor antagonists, on extracellular serotonin levels in brain regions innervated by the dorsal or median raphe nuclei. Using intracerebral microdialysis in awake rats with separate probes in the frontal cortex or dorsal hippocampus, we studied the ability of 8 mg/kg s.c. (—)penbutolol, a β-adrenoceptor antagonist with antagonist action at 5-HT1A and 5-HT1B receptors, and 0.3 mg/kg s.c. WAY-100635, a selective 5-HT1A receptor blocker, to modify the effect of 1 and 10 mg/kg i.p. citalopram on extracellular serotonin. Both doses of citalopram had more effect on extracellular serotonin levels in the dorsal hippocampus than in the frontal cortex. The effect of 1 mg/kg citalopram was significantly potentiated by (—)penbutolol in the frontal cortex only, but a clear-cut potentiation of the effect of citalopram was seen in both regions at a dose of 10 mg/kg. The effect of 10 mg/kg citalopram was potentiated by WAY-100635 in the frontal cortex but not in the dorsal hippocampus.In a second set of experiments, the combined effect of WAY-100635 and citalopram was studied in the same rat implanted with vertical probes in the striatum and dorsal hippocampus. Citalopram (1 and 10 mg/kg i.p.) raised extracellular serotonin to a similar extent in both regions. However, 0.3 mg/kg s.c. WAY-100635 potentiated the effect of 10 mg/kg citalopram in the striatum but not in the dorsal hippocampus. The results suggest that only a combined blockade of 5-HT1A and 5-HT1B receptors potentiates the effect of citalopram on extracellular concentrations of serotonin in the dorsal hippocampus. The findings may be relevant in designing clinical trials aimed at enhancing the antidepressant action of selective serotonin re-uptake inhibitors by combining them with serotonin receptor antagonists. © 1997 Elsevier Science Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.