Abstract

By performing first principles calculations within the combined approach of density functional theory and nonequilibrium Green’s function technique, we have designed some nanoelectronic devices to explore the ferroelastic switching of phosphorene and phosphorene analogs GeS. With the structure swapping along the zigzag direction and armchair direction, band gap transformed at different states due to their anisotropic phosphorene-like structure. From the initial state to the middle state, the band gap becomes progressively smaller, after that, it becomes wide. By analyzing transmission coefficients, it is found that the transport properties of phosphorene and GeS can be controlled by a uniaxial strain. The results also manifest that GeS has great potential to fabricate ferroic nonvolatile memory devices, because its relatively high on/off transmission coefficient ratio (∼1000) between the two stable ferroelastic states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.