Abstract

Investigating high-efficiency oxygen reduction reaction (ORR) catalysts is one of the most effective methods for addressing the sluggish kinetics at the fuel cell cathode. Bimetallic three-dimensional porous materials have garnered significant attention due to their diverse structures, large specific surface area and synergistic catalytic effects. Herein, we synthesized a bimetallic three-dimensional porous dodecahedral structure, Mn/Co-C-N, derived from MOF using a straightforward approach. Experimental reults confirm that the strategic incorporation of Mn enhances the electrocatalytic activity for ORR. Meanwhile, the synergistic effects of Mn and Co, as well as the advantages of the dodecahedral structure for expediting electron transfer, all contribute to the exceptional ORR performance. Arc testing in an alkaline electrolyte reveals that the initial potential (Eonset) and the half-wave potential (E1/2) are 0.89V and 0.80V, closely approximating those of commercial Pt/C (20wt%). Following 10,000 stability test cycles, the half-wave potential exhibits a mere 8 mV change, confirming its remarkable stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.