Abstract

Abstract This paper concerns the strain distribution, and in particular strain concentration in field joints, for concrete-covered pipelines during laying. A semi-analytical model, full-scale tests to verify the model, and results of a parameter study are described. The model is used to establish nonlinear moment-curvature curves at a number of cross sections on the concrete-coated pipe and in the field joint (FJ). These are used to establish a strain concentration factor (SCF) for the FJ, or characteristics for a varying stiffness model of a pipe for direct use in lay analyses. Constant moment, four-point bending tests have been conducted on 16-in and 20-in dia, concrete-coated pipes as well as material tests on the pipe steel, corrosion coating and concrete. The behavior of the pipe, and in particular the SCF at the field joints, is investigated and compared to predictions using the semi-analytical model. The model is found to give a good prediction of the SCF and strain distribution along the pipe joint, for both the steel and the concrete, and is suitable for use in lay analyses for the overbend of S-mode lay vessels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.