Abstract
Bi2FeMnO6 (BFMO) thin films with both conventional pseudocubic structure and novel supercell structure have been grown on SrTiO3 (001) substrates with different thicknesses of CeO2 buffer layers (ranging from 6.7 to 50.0 nm) using pulsed laser deposition. The correlation between the thickness of the CeO2 buffer layer and the structure of the BFMO films shows that the CeO2 buffer layer, as thin as 6.7 nm, is sufficient in triggering the novel BFMO supercell structure. This may be ascribed to the interfacial strain between the BFMO supercell structure and the CeO2 buffer layer which also serves as a seed layer. The buffer layer thickness is found to be critical to control the microstructure and magnetism of the formed BFMO supercell structures. Thin seed layers can produce a smoother interface between the BFMO film and the CeO2 buffer layer, and therefore better ferrimagnetic properties. Our results have demonstrated that strain and interface could be utilized to generate novel thin film structures and to tune the functionalities of thin films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.