Abstract

Abstract The relationship between the time-mean planetary-scale deformation field and the structure of midlatitude storm tracks is studied in wintertime simulations of the National Center for Atmospheric Research (NCAR) Community Climate Model and the National Aeronautics and Space Administration (NASA) Goddard Earth Observing System model. Model biases are determined by contrasting model simulations (forced by observed SSTs) with parallel analyses of NCEP–NCAR reanalyses. Barotropic diagnostics are employed to identify potential dynamical linkages between regional biases in the midlatitude storm tracks and the horizontal deformation field. Initial observational analyses confirm that synoptic eddies are optimally configured to transfer kinetic energy to the mean flow in the jet exit regions, where strong stretching deformation exists. In these regions, the major axes of the synoptic eddies are aligned along the dilatation axes of the mean flow. Consequently, mean flow advection stretches synoptic eddies a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call