Abstract

Nonlinear model order reduction has always been a challenging but important task in various science and engineering fields. In this paper, a novel symmetric tensor-based order-reduction method (STORM) is presented for simulating large-scale nonlinear systems. The multidimensional data structure of symmetric tensors, as the higher order generalization of symmetric matrices, is utilized for the effective capture of high-order nonlinearities and efficient generation of compact models. Compared to the recent tensor-based nonlinear model order reduction (TNMOR) algorithm [1], STORM shows advantages in two aspects. First, STORM avoids the assumption of the existence of a low-rank tensor approximation. Second, with the use of the symmetric tensor decomposition, STORM allows significantly faster computation and less storage complexity than TNMOR. Numerical experiments demonstrate the superior computational efficiency and accuracy of STORM against existing nonlinear model order reduction methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call