Abstract

Model order reduction of nonlinear circuits (especially highly nonlinear circuits) has always been a theoretically and numerically challenging task. In this paper, we utilize tensors (namely, a higher order generalization of matrices) to develop a tensor-based nonlinear model order reduction algorithm we named TNMOR for the efficient simulation of nonlinear circuits. Unlike existing nonlinear model order reduction methods, in TNMOR high-order nonlinearities are captured using tensors, followed by decomposition and reduction to a compact tensor-based reduced-order model. Therefore, TNMOR completely avoids the dense reduced-order system matrices, which in turn allows faster simulation and a smaller memory requirement if relatively low-rank approximations of these tensors exist. Numerical experiments on transient and periodic steady-state analyses confirm the superior accuracy and efficiency of TNMOR, particularly in highly nonlinear scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.